Mathematical Modeling of Heat Flux Distribution of Plasma Arc by Transverse Alternating Magnetic Field
نویسندگان
چکیده
A theoretical analysis was carried out to investigate the characteristics of plasma arc injected transverse to a transverse-alternating magnetic field. Two mathematical models were developed to describe both the oscillating amplitude of the plasma arc root and the heat flux density distribution of plasma arc on the workpiece surface. The characteristic of plasma arc under the external transverse-alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of process parameters, such as working gas flux, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation and heat flux distribution of plasma arc were also analyzed. The analytical results show that it is feasible to adjust the shape and heat flux density of the plasma arc by the transversealternating magnetic field, which expands the region of plasma arc thermal treatment and uniforms the heat flux density upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases, and the heat flux density gradient upon the workpiece increases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flux, more arc current, and less standoff cause the oscillating amplitude to decrease.
منابع مشابه
Effects of Transverse Magnetic Field with Different Alternating Currents on Heat Flux Density Distributions of Plasma Arc
An external transverse-alternating magnetic field with sinusoidal and triangular alternating currents was applied to a combined plasma arc to create a plasma arc for expanding the cross section of arc column and flatting the distributions of arc temperature. Two mathematical models were developed to describe the heat flux density distributions of the combined plasma arc driven by a transverse-a...
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملبررسی عددی انتقال حرارت جابه جایی اجباری فروسیال در لوله تحت میدان مغناطیسی
This research study presents a numerical study on forced convection heat transfer of an aqueous ferrofluid passing through a circular copper tube in the presence of an alternating magnetic field. The flow passes through the tube under a uniform heat flux and laminar flow conditions. The primary objective was to intensify the particle migration and disturbance of the boundary layer by utilizing ...
متن کاملNew Achievements in Fe3O4 Nanofluid Fully Developed Forced Convection Heat Transfer under the Effect of a Magnetic Field: An Experimental Study
Fe3O4 nanofluid fully developed forced convection inside a copper tube is empirically investigated under the effect of a magnetic field. All of the investigations are performed under laminar flow regime (670≤Re≤1700) and thermal boundary conditions of the tube with uniform thermal flux. The tube is under the effect of a magnetic field in certain points. This research aims to study the effect of...
متن کاملSimulation of tissue heating by magnetic fluid hyperthermia
Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....
متن کامل